
International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Designing Aspects of Artificial Neural Network
Controller

Navita Sajwan, Kumar Rajesh

Abstract— In this paper important fundamental steps in applying artificial neural network in the design of intelligent control
systems is discussed. Architecture including single layered and multi layered of neural networks are examined for controls
applications. The importance of different learning algorithms for both linear and nonlinear neural networks is developed. The
problem of generalization of the neural networks in control systems together with some possible solutions are also included.

Index Terms— Artificial, neural network, adaline algorithm, levenberg gradient, forward propagation, backward propagation,
weight update algorithm.

1 INTRODUCTION
he field of intelligent controls has become important
due to the development in computing speed, power
and affordability. Neural network based control

system design has become an important aspect of
intelligent control as it can replace mathematical models.
It is a distinctive computational paradigm to learn linear
or nonlinear mapping from a priori data and knowledge.
The models are developed using computer, the control
design produces controllers,that can be implemented
online.The paper includes both the nonlinear multi-layer
feed-forward architecture and the linear single-layer
architecture of artificial neural networks for application in
control system design. In the nonlinear multi-layer feed-
forward case, the two major problems are the long
training process and the poor generalization. To
overcome these problems, a number of data analysis
strategies before training and several improvement
generalization techniques are used.

2 ARCHITECTURE IN NEURAL NETWOKS
Depending upon the nature of the problems, design of
neural network architecture is selected. There are many
commonly used neural network architectures for control
system applications such as Perceptron Network, Adaline
network, feed forward neural network.
(a)ADALINE Architecture:
ADALINE(For ADAptive LINear combiner) is a device
and a new, powerful learning rule called the widrow-
Hoff learning rule this is shown in figure1.The rule
minimized the summed square error during training
involving pattern classification. Early applications of
ADALINE and its extension to MADALINE(for many
ADALINES) include pattern recognition, weather
forecasting and adaptive control

ADALINE algorithm:

1. Randomly choose the value of weights in the
range -1 to 1.

2. While stopping condition is false,follow steps 3.
3. For each bipolar training pair S:t, do step 4-7.
4. Select activations to the input units. X0=1,

xi=si(i=1,2…..n).
5. Calculate net input or y.
6. update the bias and weights.

W0=w0(old)+alpha(t-y)
Wnew=wi(old)+alpha(t-y)xi.

7. If the largest weight change that occurred in step
3 is smaller than a specified value, stop else
continue.

X1 w1

0 or 1

y

Wn

Error=t-y t

 Xn

Figure 1:ADALINE Neuron Model

(b)Feed-forward Neural Network Architecture: It is a
important architecture due to its non-parametric, non-
linear mapping between input and output. Multilayer
feed-forward neural networks employing sigoidal hidden
unit activations are known as universal approximators.

T

X

X

X

X

X

Adaptive

weights

Output error

generator

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

These function can approximate unknown function and
its derivative. The feed-forward neural networks include
one or more layers of hidden units between the input and
output layers.The output of each node propagates from
the input to the outside side. Nonlinear activation
functions in multiple layers of neurons allows neural
network to learn nonlinear and linear relationships
between input and output vectors. Each input has an
appropriate weighting W.The sum of W and the bias B
form the input to the transfer function. Any differentiable
activation function f may be used to generate the outputs.
Most commonly used activation function are
purelin f(x)=x, log-sigmoid f(x)=(1+e-x)-1 ,
and tan-sigmoid

 f(x)=tan(x/2)=(1-e-x) / (1+e-x)

Hyperbolic tangent(Tan-sigmoid) and logistic(log-
sigmoid) functions approximate the signum and step
functions,respectively,and yet provide smooth, nonzero
derivatives with respect to the input signals. These two
activation function called sigmoid functions because there
S-shaped curves exhibit smoothness and asymptotic
properties. The activation function fh of the hidden units
have to be differentiable functions. If fh is linear, one can
always collapse the net to a single layer and thus lose the
universal approximation/mapping capabilities. Each unit
of the output layer is assumed to have the same activation
function.

3 BACK PROPAGATION LEARNING
Error correction learning is most commonly used in
neural networks. The technique of back propagation,
apply error-correction learning to neural network with
hidden layers.It also determine the value of the learning
rate, ..Values for is restricted such that 0< <1.Back
propagation requires a perception neural network, (no
interlayer or recurrent connection). Each layer must feed
sequentially into the next layer.In this paper only the
three-layer, A, B, and C are investigated. Feeding into
layer a is the input vector I. Thus layer a has L nodes, ai

(i=1to L), one node for each input parameter. Layer B, the
hidden layer, has m nodes, bj (j =1 to m).L = m = 3; in
practice L m. Each layer may have a different number of
nodes. Layer C, the output layer, has n nodes, ck (k = 1 to
n), with one node for each output parameter. The
interconnecting weight between the ith node of layer A
and the jth node of layer B is denoted as vij, and that
between the jth node of layer B and the kth node of layer C
is wjk.Each node has an internal threshold value. For layer
A, the threshold is TAi, for layer B, TBi, and for layer C,
Tck.The Back propagation neural network is shown in
figure 2..

I1 V11 w11

V13 V12 w12 Y1

I2 V21 w13 w21

V23 V22 w22 Y1

I3 V31 V32 w31 w32 w23

V33 w33 Y3

Figure 2: Three-layered artificial neural system

When the network has a group of inputs, the updating of
activation values propagates forward from the input
neurons, through the hidden layer of neurons to the
output neurons that provide the network response. The
outputs can be mathematically represented by:
 M N
Yp = f(((f XnWnm))*Kmp))
 m=-1 n=-1
Yp = The pth output of the network
Xn = The nth input to the network
Wnm = The mth weight factor applied to the nth input
to the network
Kmp = The pth weight factor applied to the mth
output of the hidden layer
F() = Transfer function (i.e., sigmoid, etc.)
The ANS becomes a powerful tool that can be used to
solve difficult process control applications
Figure 3 depicts the designing procedure of Artificial
Neural Network Controller.

4 LEARNING ALGORITHMS
A gradient-basedalgorithms necessary in the
development of learning algorithms are presented in this
section. Learning in neural network is known as learning
rule, in which weights of the networks are incrementally
adjusted so as to improve a predefined performance
measure over time. Learning process is an optimization
process, it is a search in the multidimensional parameter
(weight) space for solution, Which gradually optimizes an
objective(cost)function.

a1

a1

al

a2

b1

bm

b2

cn

c2

c1

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

If YES

If NO

Figure 3: Flow chart for general neural network
algorithm

 Target

Error

Weight changes

Figure 4: Flow diagram of learning process

5 LEVENBERG GRADIENT BASED METHODS
Gradient based methods searches for minima by
comparing values of the objective function E() at
different points.The function is evaluated at points
around the current search point and then look for lower
values. Objective function E() is minimized in the
adjustable space = [1 2,…… n] and to find minimum
point = *.A given function E depends on an adjustable
parameter with a nonlinear objective function.
E()=f(1 2,…… n) is so complex that an iterative
algorithm is used to search the adjustable parameter
space efficiently. The next point new is determined by a
step down from the current point now in the direction
vector d given as:

next= now d
Where is some positive step size commonly referred to
as the learning rate.
The principal difference between various descent
algorithms lie in the first procedure for determining
successive directions. After decision is reached, all
algorithms call for movement to a minimum point on the
line determined by the current point now and the
direction d.For the second procedure, the optimum step
size can be determined by linear minimization as:

 *=arg(min(()))

 >0

where
()= E(new d).

6 LEVENBERG-MARQUARDT METHOD
The Levenberg_Marquardt algorithm can handle ill-
conditioned matrices well, like nonquadratic objective
functions. Also, if the Hessian matrix is not positive
definite, the Newton direction may point towards a local
maximum, or a saddle point. The Hessian can be changed
by adding a positive definite matrix I to H in order to
make H positive definite.
Thus,

next = now – (H + I)-1g ,
where I is the identity matrix and H is the Hessian matrix
which is given in terms of Jacobian matrix J as H = JT J.
Levenberg-marquardt is the modification of the Gauss-
Newton algorithm as
 next = now – (JT J)-1 JTr = now – (JT J + I)-1 JT r.
The Levenberg-Marquardt algorithm performs initially
small, but robust steps along the steepest descent
direction, and switches to more efficient quadratic Gauss-

Initialize network
parameters(, , no. of neurons),

input and output values

Select weight between layers

Calculate network output

Calculate MSE (error between actual

output and network output)

Is

MSE<THRSH
Network is trained

Change the weights

Choose ANN methodology

TRAINING DATA

TRAINING ALGORITHM

(OPTIMIZATION METHOD)

+

COST

NETWORK

IN

OUT

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Newton steps as the minimum is approached. This
method combines the speed of Gauss-Newton with the
everywhere convergence of gradient descent, and appears
to be fastest for training moderate-sized feedforward
neural networks.

7 FORWARD-PROPAGATION AND BACK-
PROPAGATION

During training, a forward pass takes place.The network
computes an output based on its current inputs.Each
node i computes a weighted ai of its inputs and passes
this through a nonlinearity to obtain the node input yi

.The error between actual and desired network outputs is
given by

E = 1 (dpi – ypi)2

 2 p i
where p indexes the pattern in the training set, I indexes
the output nodes, and dpi and ypi are, respectively, the
desired target and actual network output for the error
with respect to the weights is the sum of the individual
pattern errors and is given as

 dE = dEp = dEp dak

 dWij p dWij p,k dak dWij

where the index k represent all outputs nodes. It is
convenient to first calculate a value i for each node i as
 i = dEp = dEp dyk

 dai k dyk dai

which measures the contribution of ai to the error on the
current pattern. For simplicity, pattern index p are
omitted on yi, ai and other variables in the subsequent
equations.
For output nodes, dEp / dak, is obtained directly as
 = -(dpk - ypk) f (for output node).
The first term in this equation is obtained from error
equation, and the second term which is
 dyk = f’ (ak) = f’k

 dak

is just the slope of the node nonlinearity as its current
value. For hidden nodes, i is obtain indirectly as

i = dEp = dEp dak = k dak

 dai k dak dai p dai

where the second factor is obtained by noting that if the
node I connects directly to node k then dak / dai = f’iwki,
otherwise it is zero. Thus,

i = f’i wk k

 k
for hidden nodes. i is a weighted sum of the k values of
nodes k to which it has connections wki. The way the
nodes are indexed, all delta values can be updated
through the nodes in the reverse order. In layered

networks, all delta values are first evaluated at the output
nodes based on the current pattern errors, the hidden
values is then evaluated based on the output delta values,
and so on backwards to the input layer. Having obtained
the node deltas, it is an easy step to find the partial
derivatives dEp/dWij with respect to the weights. The
second factor is dak/dwij because ak is a linear sum, this is
zero if k = i; otherwise
 dai

 = Xj

 dwij

The derivative of pattern error Ep with respect to weight
wij is then
 dEp

 = ixj

 dwij

First the derivative of the network training error with
respect to the weights are calculated. Then a training
algorithm is performed. This procedure is called back-
propagation since the error signals are obtained
sequentially from the output layer back to the input layer.

8 WEIGHT UPDATE ALGORITHM

The reason for updating the weights is to decrease the
error. The weight update relationship is

wij = dEp = (dpi – ypi) fixj

 dwij

where the learning rate >0 is a small positive constant.
Sometimes is also called the step size parameter.

The Delta Rule is weight update algorithm in the training
of neural networks. The algorithm progresses
sequentially layer by layer, updating weights as it goes.
The update equation is provided by the gradient descent
method as

wij = wij (k+1)- wij(k) = - dEp

 dwij

dEp = -(dij – ypi)dypi

dwij dwij

for linear output unit, where
ypi = wij xi

 i
and

dypi = xi

 dwij

so,
wij = wij (k+1)-wij (k) = (dpi – ypi)xi

The adaptation of those weights which connects the input
units and the i th output unit is determined by the
corresponding error ei = 1 (dpi – ypi)2.

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 5
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Training Data Analysis
Two training data analysis methods are:
(1)normalizing training set and initializing weights
(2)Principal components analysis(speed up the learning
process).

9 CONCLUSION

The fundamentals of neural network based control
system design are developed in this paper and are
applied to intelligent control of the advanced process.
Intelligent control can also be used for fast and complex
process control problems.

REFERENCES

[1] Rajesh Kumar, Application of artificial neural network in paper
industry, A Ph.D thesis, I.I.T.Roorkee, 2009.

[2] S.I.Amari,N.Murata,K.R.Mullar,M.Fincke,H.H.Yang(1997),Asyptotic
Statistical Theory of overtraining and cross validation,IEEE
Trans.Neural Networks,8(5),985-993.

[3] C.H.Dagli,M.Akay,O.Ersoy,B.R.Fernandez,A.Smith(1997),Intelligent
Engineering Systems Through Artificial Neural Networks,vol.7 of
Neural Networks fuzzy logic Data mining evolutionary Programming.

[4] H.Demuth and M.Beale(1997), Neural Networks toolbox user
guide,mathworks.

[5] L.Fu, Neural Networks in Computer Intelligence(1994).
[6] M.T.Hang.andM.B.Menhaj(1994),Training feedforward Networks with

the Marquardt Algorithm,IEEE Trans. Neural Networks,5(6),989-993.
[7] Hong HelenaMu,Y.P.Kakad,B.G.Sherlock,Application of artificial

Neural Networks in the design of control systems.

http://www.ijser.org/

